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Variational Treatment of the Diffraction at the
Facet of d.h. Lasers and of Dielectric
Millimeter Wave Antennas

TULLIO E. ROZZI, SENIOR MEMBER, IEEE, AND GERARD H. w1t VELD

Abstract—This paper presents an accurate variational treatment of the
diffraction of TE and TM waves by an abrupt transverse discontinuity in a
dielectric waveguide, such as the mirror of a double heterostructure (d.h.)
injection laser, or the end plane of a dielectric slab antenna for millimeter
waves, under the assumption of small aspect ratio.

A matrix representation of the Green’s function is derived analytically,
in the limit of small effective frequency, for the TE case. For the TM case,
the complication introduced by the discontinuity of the transverse electric
field across the dielectric interface is discussed in detail,

The numerical examples refer to the d.h, laser configuration, Both
transverse directions (perpendicular as well as parallel) to the junction are
studied. The effect of mode coupling at the mirror of a LOC laser as well
as the effect of an antireflection coating are investigated.

1. INTRODUCTION

HE PROBLEM OF diffraction of surface waves at
Tthe end facet of a double heterostructure (d.h.) laser
(Fig. 1(a)) or of a semi-infinite slab (Fig. 1(b)) is a classi-
cal one jn dielectric waveguide theory.

The mirror reflectivity is a crucial parameter of the
laser, as it determines its oscillation condition. Moreover,
dielectric slab antennas find applications at millimeter
frequencies.

A variational formulation of the diffraction of TM
waves by a semi-infinite slab was given in [1] as far back
as 1957, In this treatment, the incident surface wave is
used as a trial field. An analogous approach was used in
[2] to discuss the diffraction of TE and TM waves, per-
pendicular to the p-n junction, at the mirror of a d.h.
laser, as well as in [3].

A different approach based on a Fourier transform of
the integral equation was introduced in [4]. An elegant
approximate analysis neglecting mode conversion at the
facet leads to an explicit expression of the far field, as
elaborated in [5], whereas in [6] a theoretical comparison
of various approximations is presented. A recent compre-
hensive review of the subject with numerous references
can be found in {7), [8].

Steplike discontinuities in dielectric slabs (TE case)
were analyzed in a previous paper [9]. There a higher
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Fig. 1. Longitudinal cross section of laser, showing (a) facet with
mirror, (b) facet with antireflection coating.

order variational solution of the Ritz—Galerkin type was
obtained by discretizing fields and Green’s function by
means of a sequence of appropriately scaled Laguerre
functions. The above basic approach is the starting point
of the present treatment.

In the TE case, we can take advantage of the fact that
as the effective frequency vd = (n} — n2)"/%,d goes to zero,
the slab Green’s function in the magnetic field formula-
tion reduces to that of a homogeneous half-space. The
latter is just the Hankel function whose exact representa-
tion in terms of the expanding functions of {9] can be
obtained analytically. In this manner, the matrix elements
of the total Green’s function (air space and semi-infinite
slab) are given by a closed expression plus a small correc-
tion (0(vd)?) to be determined numerically. This approach
is analogous to the extraction of the quasi-static limit for
discontinuity problems in closed waveguides. In the TM
case, the above approach does not apply unless #,~n, as
well.

The formulation of the TM problem in terms of the
transverse electric field leads to an expression of the
Green’s function that is converging in the classical sense
(unlike the magnetic field formulation). The transverse
electric field is discontinuous at the dielectric interface
however, an expansion in terms of continuous functions
as in [9] is not suitable for large refractive index dif-
ferences.
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This difficulty is avoided by employing two separate
sequences of expanding functions: one inside the slab, the
other outside it,

The above analysis applies to other TE and TM discon-
tinuity problems, such as in [10] for instance.

In the examples, the effect of coupling between surface
modes at the mirror of a LOC laser is investigated in
detail and found to be insignificant. The effect of an
antireflection coating at the mirror is to reduce the laser
configuration of Fig, 1(a) to that of the semi-infinite slab
of Fig. 1(b). Scattering properties and near fields in the
two configurations are compared.

The effect of gain in the active region and loss outside
is taken into account. This is not significant in the direc-
tion perpendicular to the p-n junction, whereas it provides
the very guiding mechanism parallel to it. In fact, an exact
treatment of the mirror reflectivity of the laser would
involve solving the three-dimensional diffraction problem
of a semi-infinite guide with a sharp dielectric boundary
in the direction perpendicular to the junction and a dif-
fused one parallel to it. Gain-induced parallel modes,
however, can be reasonably well simulated by the modes
of an active dielectric slab in a lossy medium, particularly
for configurations with transverse current confinement.
Excluding some special configuration such as buried het-
erostructures, the stripewidth (3—10 um) is considerably
larger than the thickness of the active layer (0.3 pm).
Hence, it is reasonable to break down the hybrid mode
problem [11} (resulting from the two-dimensional cross
section) into a perpendicular TE-mode problem and a
parallel TM one to be solved successively by means of the
Effective Dielectric Constant procedure [12]. If required,
the total reflectivity could then be deduced by combining
the two reflectivities in a manner analogous to that dis-
cussed in [7], [13] on a spectral basis.

The variation of the reflection coefficient of the paraliel
mode and of the near and far fields with varying gain and
stripewidth are numerically investigated.

II. WAVEGUIDE MODES

The basic configuration under study is depicted in Fig.
1. It consists of a dielectric slab of width 24 and complex
refractive index n; = n]+jn{ enclosed between two semi-
infinite layers of complex refractive index n,=n)—jnJ,
(n3<n}). The structure is terminated abruptly at z=0.
Owing to symmetry, we need only consider x> 0. As a
consequence of the discontinuity at z=0, the incoming
surface wave couples to the continuous spectrum of the
slab and of the air half-space (z>0).

A. Surface Wave

1) TM: The transverse field component of a surface
wave mode of the slab H, and E, is given by

Ex(x)=€—(§;u(x) (1a)
Ig(x)=‘—"/%u(x)snu(x> (1b)

where
2
ny, x<d
e(x)= { ;
ny, x>d.

B is the propagation constant of the surface wave. u(x),
which is proportional to the x-component of the electrical
displacement vector, for even modes is given by

u(x)= | acoskx,
acoskde Y&~ 9D,

(2a)
(2b)

The wavenumbers x and y are related by the conservation
equation

x<d
x2d.

K2+ y?=(n?— n2)k2=0" (3a)
and the dispersion relation
ktankd=(n,/n,)’y. (3b)

The normalization constant a in (2) is fixed by the re-
quirement

j(;m——l—uz(x)dx=l 4

e(x)
a=n F 2
l[ d+(mny)*(k+ v?)/(n3x+nly) /v

The odd modes are determined by interchanging sin and
cos in (2) and setting kd—kd+ 7 /2 in (3).

2) TE: In the TE case the relevant transverse field
components are H, and E, given by

E,(x)=u(x)

- H/(x)= —“BTO u(x)= You(x).

to be
1/2

)

(6)
(7

u(x) is given by 2. The conservation equation is the same
as (3a). The dispersion relation is

wtanxd =1y, ®)
The normalization is such that
[T wxyax=1 )
0
and consequently
X ’ 2
a= 7_._—1/—_}, . ( 10)

B. Continuous Spectrum

1) TM: The H, component of a mode of the continu-
ous spectrum of the region z <0, for even modes, is given
by

H,(x,p) = Y(p)o(x, p) (11
with
2 —n—zcossx, x<d
¢(x=“)= \/;: <
\/%‘nzcos[s(x—d)+a], x>d
(12a)
(12b)
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where
2o = X0 s Mkg>p .
1/n2k2~ 2 B(r)
2K~ U
Y(p)= ue (13)
—0 nyko<p
\/H —n3ks
sf=p’+0?, 0<pu<oo (14)
5 ny\4 s\2 . 5 1/2
C=|cos sd+(—) (—) sin®sd (15)
WA

2
=[tan"’%(%) tansd}, ( lim a= yd) and n,—>n,.
1

p—>0
(16)
The normalization condition is
® dx
[ s sxmelxw)=8(u—p). (17)
o €(x)

We can describe the field in the air region by means of a
continuous spectrum of plane waves

Y(x,p)= (18)

although a more compact representatlon (to be discussed
later) will also be useful. The odd modes are obtained by
replacing cos by sin in (12a), (18) and sd by sd+-271 in
(15), (16), and (12b).

2) TE: The even E, and H, components of the continu-
ous spectrum are given by

— cospx

E,(x,p)=(x,p) (19)
= H,(x,1)=Y(p) $(x,1) (20)
where now
'V% —é—cossx, x<d
o(x,p)= > 21)
V; cos[ w(x—d)+a], x>d
22_ 2
22737#— . mk>u
Y(p)= ° (22)
\ / p?— n3kg
- 20 ko<
et nyKe<p
=tan—H 5 =
a=tan (;tansd) (I‘lgrc}oa pd) (23)
o? 1/2
C=|1+— sinzsd} 24)
p.
and
J, 800w ) = 8= ). (25)
It is worthwhile to observe that as u?>> 0%, we have
S—>[1; a—pd, C-—l (26)
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and

2
$(x, )\ cospux @7
i.e. the continuous spectrum of the slab reduces to the
plane wave spectrum of a semi-finite homogeneous region.

This is not the case for TM waves unless n,~n, also.

II1. INTEGRAL EQUATION FORMULATION AND
GREEN FuNncTION: TM CASE

Consider n surface waves to be propagating in the slab,
characterized by the functions u,---u, Let the electric
field amplitudes of the incoming and reflected waves at
z=0 be expressed by the vectors A and B, respectively.
Let b(u) denote the amplitude of the scattered modes of
the continuous spectrum in the slab and d(p) that in air.
Continuity of E, at z=0 requires

E(0)= 3 (4805 4 [o(Etl g,
k=1

- " a( u)¢(x,u)du (28)

while continuity of H, requires

H ()= 3 Yoldy—Bu(x)~ [~ ¥(0b(n)o(r )
k=1 0

= [ YW u9e (29)
where
Yo(1)= \/i; (30)
ko <ph.

B,, b( 1), and d( p) can be obtained by orthogonality from
(28). Hence, the integral equation for the electric field is

S Yodin(x)= [ ¥(xx)E()dx (1)
k=1 0
where
2Y(5.5)= 3 Yot ()
+ fo °°[ Y(pw)o(x, We(x', 1)
+ Yo( (e (', p) Jdp. (32)

Let E; be the solutions of (31) with 4,=1; 4,_,=0. The
scattering matrix of the discontinuity, as seen by the
surface waves of the slab is then

o0
Skl = 8k1 + j(; E,ukdx. (33)

We observe that E, (x) is discontinuous at x =d, namely
nE(d™)=nj (34)

E(d™).
Instead of using (28) in (29), obtaining an electric field
description, it is equally possible to proceed the other way
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round, obtaining a magnetic field description. This is given
in Appendix III.

IV. DISCRETE REPRESENTATION AND Ritz—-
GALERKIN SorLution: TM CASE

The integral equation (31) is amenable to a Ritz—
Galerkin variational solution with good convergence
properties if account is taken of the discontinuous jump of
E_ at x=d. Using a complete expanding set continuous
over the interval 0<x < oo as for the TE case [9] is less
satisfactory here unless n,=sn,, for more terms would be
required. We shall introduce instead a piecewise continu-
ous expansion. The E, component of the surface wave
u(x)/ e(x) can be written as a two-component vector

Mr_a( (l/n%)cosnx )E((l/nf)ul(x))
e(x) (1/n3) coskde 7>~ (1/n3)uy(x)
(35)

where the first component represents the field in the
interval 0 € x <d and the second 1 the interval d<x.

A similar description applies to the E, component of a
mode of the continuous spectrum. Consider now a func-
tion f(x), continuous over each subinterval, where it takes
the form f,(x) and f,(x)}, respectively, but possibly discon-
tinuous at x =d. The “scalar” product in functional sense
of u(x)/e(x) is just

A= [0 “((";

“u () + = f " () (). (36)
”1

S(x)dx

In each interval, we can find a separate discrete sequence
of expanding functions
c.{(x):0<x<d, m=0,1,--- M
Lx—~d):d<x, n=0,1,---,N. 37
The ¢,’s are complete in the limit M—co and possibly
orthonormal over the interval of definition and so are the

£,’s. By means of the set (37), the function u(x)/e(x) is
transformed into the M + N +2-dimensional vector

< | (1/n))Q, }M+1
---------- 38
¢ [(w%)Qz )N+ oo
where
M
u(x)= 2=0Q1mcm(x) (392)
N
uZ(x)= §0 QZnLn(x_d)' (39b)

If a similar expansion holds for the arbitrary function f(x)
so that f—(F,F,), then the “scalar product” (36) reduces
to the ordinary scalar product of two M+ N +2-
dimensional vectors:

U o Lor Lo\ (B
<-€-,f>—( S0 Q{) (£)

(40)

In view of the behavior of the surface wave mode, an
appropriate choice of the “basis” (37) is

n(x) =22 cos T (@)
with
. = { i, m=0
1, m>0
fo Yo (x)e,(x)dx=8,, 42)
and

Bn(x~d)= 1 L ( x_d)e—(x—d)/Zxo (43)

VX "\ X

o0
[ Enlx =D (x=d)=0,, (44)
The L,’s are the ordinary Laguerre polynomials, x, is a
scale factor to be determined so as to “optimize” the finite
expansion. A useful criterion is to minimize the error of
the representation of the incident mode outside the core.
If v is real, the representation is trivially simple: we just
set N=0, x,=——
€ Xg 27

As vy is complex in general, we use a minimum square
approximation for any given N. Another criterion consists
of imposing the continuity of » at x=d, i.e., from (41) and
(43)

M 2em Q2,(%0)
' -1 = = 45
ng() ¢ =D Eo Vx, )

The former is suited to describe the “tail” of the field, but
does not ensure a priori that the condition at the interface
x=d is satisfied. The contrary holds for the latter. The
coefficients of the expansion (39) are found by straight-
forward integration

\/m (—)'"( ;n;id-xd >,  Kkd#mm
B kd ) —(mm)
le a d (46)
6—'5— 5 kd = mm
and

n —-n—1
0y, =aVx, cosxd(yxg—3) (vxo+3) " .
A formally similar expansion (but convergent only in
distributional sense) holds for the modes of the continu-

ous spectrum

Pl(l")
oz )P {PM} 47)
where
2 [end m  Sinsd-sd
o eV OV G T
1m
i ;e_"ﬁ sd=mm
CV a
(48a)



ROZZI AND IN'T VELD: DIFFRACTION AND MILLIMETER WAVE ANTENNAS

and [9, appendix I]

2x,

(="

Pon= T 1, ,2.2\1/72
(Z"'H xo)

. cos[(2n+1)tan™"2uxy+a].
(48b)

The expansion for the continuous spectrum in the air
half-space is

PO
‘I’(x’l")_)P(): ( P:?)

with
€, d m  sinpd-pd
/= (-)Y"———————, ud#
Pp,= m (pd)*~(mm)’ "
fmﬂf , pd=mm
(49)
Pl = 2% -Ll-)—"——cos[(Zn+l)tan_‘2pxo+yd].

T (G+p3d)”?

(50)

The terms of the above sequences of expanding functions
E, is expressed as the (unknown) M + N +2-dimensional
vector

(l/n%)Fl

(1/ n3)F,
and the integral equation (31) for the electric field with
A,=1; 4;_,=0 becomes the matrix equation

2y

Yo Q= __I_/Fl (52)
where
Y = ﬁ{ s L .07+ (" ;P(M)PT(H)
= 2 [ 2
k—1 :Bk 0 ngko_ “2
+— P PT( ) |d. (53)
k§— p?

The normalized scattering matrix for the surface waves is

Su=—=8,+ VY, Y, OI-Y .0, (54)
while the scattering of a surface wave into a (radiative)
mode of the continuous spectrum of either the slab or of
the air region is
YY) P(y)
Yo/ *(1) PO(p)
The upper or the lower expressions are assumed according

to whether the continuous mode belongs to the spectrum
of the slab or of the air region, respectively.

S= t(YOk)‘/’{ oLyt { (55)
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V. INTEGRAL EQUATION AND GREEN FUNCTION:
TE CASsE

Unlike the TM case, in the TE case, both transverse
components E, and H, are continuous across the dielec-
tric interface. Two features result from this property.

i)  The limit (26)—(27) holds for p*>v? even if n,>n,.

il) A continuous expanding set can be used.

The continuity equations for the TE case have already
been discussed in [9]. The integral equations for the mag-
netic field with 4,=1, 4,_.,=0 are

= Zu(x)= [ 2, )(¥)

with the Green’s function

(56)

, 51
Z(xx)= 242 { 3 5 uHu)
+ ] (%, pm)e(x",p)
V”%ko —p?
+ 2w COS jux COS p,x'}. 57
T J0 2_ .2
ko—m

In the even case, the contribution of the air half-space
region can be written compactly as

cos px cos px =5 >, HP(kolx = x')).
4+

2 f”____dﬂ
(58)

H®=J,—jN, is the Hankel function of the second type.
No such close form expression is available for the contrib-
ution of the region z<0. However, it is convenient to
extract the limit of lightly trapped waves (vd)’<1) from
the impedance of the latter region. In fact, we have

o d,
f ——(x,we(xp) =1 D HP(npkolx + x'])
° Yniko—w *
%0 du
+ | —t(x,x5n). (59)
f" Vniks—
The “difference” kernel

2
#(x,x; ) = (x, p)$(x', p) ~ — cospxcospx’  (60)

is identically zero for v=0 and decreases as > for large
p. Hence, the total Green impedance function can be
rewritten as

Z(x,x)= 22 { )

; lﬁikuk(x)uk(x')

+ [ S Bkl £ x')
+ HP (nykglx x’l)]

© 1 ,
+f0 mt(x,x ,u)du}- (61)
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Analogous results hold for the odd case. The electric field
formulation is given in Appendix IV. Owing to feature ii)
mentioned above, the normalized Laguerre functions (43)
can be employed as expanding functions over the whole
interval 0 <x < oo. The functions u(x), ¢(x, ) are mapped
into the N+ 1-dimensional vectors @, and P(u), respec-
tively. These have been derived in [9] and are reported in
Appendix I for ease of reference. The advantage of in-
troducing the Hankel function in the preceding formula-
tion is that the matrix elements

Hp(p)=3 [ [ " axar 1,,()

[HP(x+ )+ HP(v]x— ') [L(x)  (62)

can be derived analytically. Derivation and result are
given in Appendix II. Hence, the integral equation for the
magnetic field formulation becomes the matrix equation

Zy Q= =Z G (63)
G, corresponds to the unknown A(x) and

Mg

Z= D) Z'I“QkaT+ﬁ(ko)+H—(”zko)
= & Pr

© d
+ [ == [P(WPT(0) = PA(WP ()] (64)
° ymki—p?
The scattering matrix between surface waves is given by
Su=8.—VZyZy O __%_I‘Qz (65)

while the coupling between surface waves and the con-
tinuous spectrum is given by

zV(p) —1_{P(u)
zrw® 2 P

the upper expression applying to continuous modes of the
slab, the lower one to modes of the air region.

S(w=72y 2{ (66)

VI. NgAR aND Far FIELD

A. TM Case

Once (52) has been solved, we obtain the approximate
expansion of the near field as

1 M
2 2 Flmcm(x)a
ny m=0

1 N
L 3 FL(x-d), d<x
ny n=0

0<x<d

E(x)= (67)

The corresponding far field obtained by saddle point
integration as in [9] is

1
n-kgyr

H(r,0)/wep J(§)e o= (/)

(68)
where, in air, § is measured from the positive z-axis, and
we have n=1

f(8)=[ PY(kysin8), PY(k,sin8)]"-F. (69)

TABLE I
CONVERGENCE OF REFLECTION COEFFICIENT: TEy MODE*
N T LT (degrees)
0 0.598 4.41
1 0.624 3.04
2 0.620 2.52
3 0.624 2.75
4 0.623 298
5 0.622 292
With antireflection coating:
4 0.024 0.18

*d=0.3 pm; A\g=0.9 pm; n,=n]=3.61; n,=nj=3.40.

In the laser, 8 is measured from the negative z-axis, n=n,,
and

f(8)=[ PX(nkysind), PY(n,k,sin8) " F

.o J1e(®) ~ mkodsin 8] (70)
B. TE Case
The near field is here given by
N
H(x)= X G,2,(x) (71)
n=0
while the far field is
EF(r,8),/ w1
1 oTrr ..
e PV (kysinf)-G, in air
0
nZ;cor PT(k,sing)- Ge /%O ~mkedsinfl - ip the laser
(72)

VIIL

The theory described in the previous sections will now
be illustrated by means of a few examples.

EXAMPLES

A. Refractive Index Guiding

First, the convergence of the reflection coefficient of the
TE, mode perpendicular to the junction for increasing
order of the variational solution was tested for the stan-
dard configuration, perpendicular to the p-n junction,
where

ny=n5=3.40; A,=09 pm; d=03pm.

The results are shown in Table 1. The modulus of the
reflection coefficient agrees quite well with that given in
[2], [14] where the incident TE, mode is assumed as “trial
field.” This is to be expected, owing to the variational
nature of the reflection coefficient. The near and far fields
are compared in Fig. 2 with those resulting from assuming
TE,. In the latter, the near field is a real function, plotted
as a broken line in Fig. 2(a). In the present treatment, the
near field is a complex quantity, whose amplitude and
phase are shown in Figs. 2(a), (b). In particular, there
appears to be nonnegligible bending of the phase front
just outside the active layer, where the flanks of the near
field differ from those of the modal field. The correspond-

n,=n;=3.61;



ROZZI AND IN'T VELD: DIFFRACTION AND MILLIMETER WAVE ANTENNAS

Relative phose neor field

Relative

67

amplitude far field

e Present solution
~—~- Modol field

With anti reflection
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Fig. 2. Comparison of variational field (direction perpendicular to the
junction) with modal field. (a) Amplitude of near field. (b) Phase of
near field. (c) Amplitude of far field,

S00=0'875+10:003 ; §pq=-0:004 4 0002

With antireflection coating
Swo=0:033 - j 0000

ned w\\\\\

$20% Soz ; Syp=0:660 4 0:018

X:ﬁ;:m:
K3 N>

$0a=0007 + | 0:000 ;S=0:068 » 0001

Relative omplitude near field

Interface

Relative amplitude far-field

=+ e With coating

'

- i
n Lo 60°

Fig. 3. Perpendicular field at the facet of Large Optical Cavity laser.
Geometry shown in the insert. (a) Amplitude of near field. (b) Ampli-

tude of far field.

ing far field is compared in Fig. 2(c) with that obtained
from the modal field by means of a Fourier transform,
including the correction for the “obliquity factor” [14],
[15] and seem to agree even better with the experimental
results of [16]. The inclusion of gain in the thin layer,
typically 50 200 cm ™!, and of free-carrier loss (5 cm™1) in
the surrounding region does not appreciably alter these
results, except for a very slight narrowing of the near field.

The question arose whether in a large optical cavity
laser, where possibly more than one E* mode can propa-
gate, significant modal coupling can take place at the
mirror. Typical results are shown in Fig. 3. TE; and TE,
are propagating and TE, is incident. Mode coupling as

given by |Sg,| is insignificant. The magnitudes of the
reflection coefficients |Sqo| and |S,,| agree quite well with
the values found in [2]. However, the near field plotted in
Fig. 3(a) differs from that of the incident TE, mode. The
corresponding far field is given in Fig. 3(b).

B. Antireflection Coating

Placing an antireflection coating on the laser mirror
reduces the configuration of Fig. 1(a) to that of a semi-
infinite slab radiating into a half-space n, shown in Fig.
1(b). The ensuing reduction of the reflection coefficient is
shown in Table I for d=0.3 pum. The near field is now
fairly close to that of the incident TE, mode. The ampli-
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tude of the far field (Fig. 2(c) for the standard configura-
tion d=0.3 pm and Fig. 3(b) for the LOC case d=1.6 um)
shows a somewhat broader radiation pattern.

C. Gain Guiding

Fig. 4 gives a somewhat idealized picture of the laser
cross section, neglecting diffusion parallel to the junction.
In this direction mode confinement (guiding) is provided
by gain g in the GaAs region under the stripe (active
region) and by loss outside it. The above two-dimensional
cross section is replaced by the slab configuration of Fig.
4(b) by means of the effective dielectric constant proce-
dure. If we assume a hybrid E* mode (TE perpendicular
to the junction), we must then consider a TM mode
parallel to it.

As mentioned in Section III, the E_ -component is
slightly discontinuous of the interface so that (¢E,),, ,—~ =
(€E,), 2+ . This condition is not satisfied a priori by the
variational solution since the expansion inside and outside
the stripe are independent and converge separately in the
mean. The convergence of the variational solution, for a
5-um wide stripe with a gain of 300 cm™! in the active
region, is shown in Fig. 5. The near and far fields for
M=0,1,4, N=0,4 are compared with those obtained,
assuming the incident modal field as near field and its
Fourier transform as far field.

The amplitude of the modal field and the variational
near field are virtually identical under the stripe and differ
somewhat in the tail outside it. Taking M =1, N=0, 1.e. a
two-term Fourier cosine expansion with complex
coefficients under the stripe and a single exponential term
outside is quite satisfactory in all respects. The phase of
the near field, albeit significant, does not differ apprecia-
bly from that of the incident (complex) mode and, as
such, is not plotted. The magnitude of the far field is
hardly sensitive to the details of the near field; so assum-
ing the latter to be the incident modal field gives virtually
identical results. The variation of the reflection coefficient
with gain and stripewidth in the region 3<w<6 pm was
also investigated and found to be rather minor.

D. Gain Guiding and Refractive Index Antiguiding

Owing to the relationship between real and imaginary
part of the refractive index, gain guiding is necessarily
accompanied by refractive index antiguiding. The ratio
between the latter and the former is estimated to be in the
region of 0.5-3 by various authors [17}, [18]. We assume
the lower value in considering the configuration of the
insert of Fig,. 6.

Plotted are the far fields for w=3, 5 um and for three
different values of the gain. It is interesting to note the
appearance of sidelobes for the smaller stripe and lower
gain values. These lobes become more prominent with
increasing antiguiding. Also, for the smaller stripewidth,
the influence of the gain on the field pattern and on the
reflection coefficient is somewhat more marked, as to be
expected.

Y
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Fig. 4. Idealized geometry for computing fields parallel to the junction.

(a) Original two-dimensional cross section. (b) Equivalent one-dimen-

sional cross section after application of the Effective Dielectric Con-
stant procedure.

VIIL

We have derived a rigorous variational treatment of the
abrupt discontinuity at the end plane of a dielectric (ac-
tive or lossy) slab in a lossy medium under the assumption
of small aspect ratio.

New theoretical results allow the discretization of the
Green’s functions for both TE and TM cases in both
electric and magnetic field formulations. Numerical re-
sults are provided for the d.h. laser configuration. From
these, it appears that assuming the incident field as trial
field gives an accurate estimate of the modulus of the
reflection coefficient in both directions, parallel and per-
pendicular to the junction as expected, as well as a good
guess of the near field parallel to the junction. Significant
differences, however, arise in the near and far fields
perpendicular to the junction, In particular, the amplitude
of the far field decreases faster than previously theoreti-
cally predicted, even including the “obliquity factor” cor-
rection. Correspondingly, the phase of the above near
field presents a significant distortion previously unre-
ported.

The analytical techniques presented are quite general
and can be applied to various types of dielectric discon-
tinuities at optical and microwave frequencies.

CONCLUSIONS

APPENDIX |

Components of the Vectors Appearing in Section V (TE
Case)

R cos[(2n+ l)tan_12kx0]

Qin=aVx,i(—1) [% +(kxo)2]l/2

+ 3 (- vt £)

cos[ (k+1)tan™" 2kxy+ kd |
1/2
[% + (kxo)z]
m=0,1...N. (A.)

coskd

) (%+'}’x0)k+l
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Fig. 6. Amplitude of the far field (direction parallel to the junction) for
different values of gain and stﬁpewidth. Gain guiding and refractive

index antiguiding.
2x, | (—1)" cos[(2n+1)tan™"2sx, ] . ‘ APPENDIX I
P(p)= — C [ 2] 72 It is required to compute
1+ (5x,)
4 0 - © e x dx o N x'
Hpq(k0)=f e /2 OLP(—) f e /2 oLq(__)
0 Xo on 0] Xo
n d \| cos[ (k+1)tan™'2px,+a] dx’
AR A (-) HP (k| x T x)—=—. (A3
= K\ % [%+(uxo)2(k“)/2] o (Kol ) Ve (A3)

Let us introduce the expansion

, e—[x—x'|/2xo 0 x - x'
(A2) Hykox=x)=——— 3 qr,2=*1 (a4)
(¢}

c 1 27(k+1)/2 ) o o
[;+(sx0) ] . . . . . .
with coefficients to be determined later. Using (A.4) in

1 cos[(k+1)tan™'2sx4+s5d]
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{A.3) we obtain

=L+ (AS)

. X—X
Hence, setting =u, we have
X

- dx x/x% x
/= x/xq _
I ./(; L ( xo) * j(; Lk(u)Lq( 0 u)du

=[5 ) o[l (3

(A6)

= p.k+gq 8p,k+q+l'

* = u in the second integral in (A.5)

. .oox
Similarly, setting
Xp
we have

© dx x © x
= —x/Xq —u
fo _xo Lp( * )e fo e k(u)Lq(u+ * )du.
(A7)

However, using integration by parts, we obtain

fowe'“Lk(u)Lq(u+ xio)du=foqu("+ }%)d
-{e""[Lk_l(u)‘Lk(u)]}
_f (u+—) e [ L_y(4)— Li(w)].

(A.8)
Using the result [19, p. 1038]

L, (u+—) 2 m() Ly _

(A.8) can be rewritten as

qil Lq_l—m(xio)v/(;w

m=0
q—1 x
= 2 Lq——l—m(—)[am,k—l_am,k]

m(xio) (A9)

[Lk 1(w)— Lk(“)] (W) du

m=0 Xo
X X
2 o)
Hence
Ik” =0 gk sp,q—l—k (All)

which, together with (A.6), gives
H, =a, ,—a

pPq

(A.12)

(a, =0 for k<0). In order to compute H*, let us again
use (A.4) with the minus sign changed into plus. Using
(A.29-35), we get

B
pq zakf /L< )xo

.fw —x'/%of ( /) —]x—x’l/2xoLk( 'x+‘x’) dx’
0 Xo X0 X

p—g-1T g~ 81

=Gy prgur (A.13)
Hence the result
H, (ko) =H,; (ko) + H,; (ko)
E%( Bysg™ Bprgat)
+3(a,_,~a,_, +a,_,—a,_, ).
(A.14)

It still remains the task of evaluating the coefficients of
the expansion (A.6)

20
a,= xoj; e " 2HP (koxou) L (u)du.

Using the expansion of the Laguerre polynomials [19, p.
1037] we obtain

ak=x0§_ ("l)m(k
=x02( n” (

m=0

.{Pm[(1+4k x2)” ‘/2]+ =0, (1+4k3x3

m!

k 1 *© —U m
m)_[./; e " *2H{P (koxou)u du]

L = 1/20m+ 1)
m)(Z + koxo)

1/2”
(A.15)

where the definition of the Hankel function H{®=J,~
JN, and [19, pp. 7-11] have been used. P and Q are the
Legendre polynomials of order m. Let

o=arctan 2kyx, (A.16)
cos gy =(1+4k2x2) "'/, (A.17)
Hence
k k +1
ko) = -1 '”( ) 2c0s )"
a (ko) = xo m2=0( ) k—m (2cos )
-{Pm(cos%) +j% Qm(cos%)], k>0
=0, k<O. (A.18)
APPENDIX III

Magnetic Field Formulation: TM Modes
From (28) and (29) by orthogonality, we obtain the
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integral equation for H, with 4,=1, 4,_,=0, that is h,.

2u5 = [ 20 ()

where H, is continuous at x=d and

no L (%) w(x)
201 50| 28
o(x,p) &(x',p)

+f W=y e(x)  e(x)

+/ao<u>¢(x,u)¢(xcu)]du}. (A20)

Unlike (32) and (64), the p-integral in the above Green
impedance function does not converge in the classical
sense. A properly convergent expression, however, can be
obtained utilizing a potential function. Let ®(x,u) be a
continuous function, such that

__q,( u)= ¢(Zcxl)t)

Then, by partial integration, we have

#(x.p) (. dH(%)
f S Hdx= fo O(x, 0) = dx.
(A22)
If the “trial field” H is a “good” function [20] ®(0,p)=0
and |®(co, )| < o0, then the integrated term vanishes. The
appropriate function @ is clearly

(A.19)

(A21)

[eH]7

—_ = s1nsx, x<d

o(x,p)=\/— sC

2 11 . n, v? .
— { ——sinf f{x—d)+a R
7 { R [ )+l n? sCp? }

x>d. (A23)

In the air space, the appropriate function is

‘If(x,p,)='\ /% %sinp,x.

As we are dealing with “trial fields” constituted of “good”
functions, the Green’s impedance function can be rewrit-

ten as
11 u(x) w(x) (d\T
7 oy { 2 A +(%)

e(x) e(x)
: fo " du[ B(p)®(x, 1) ®(x', )

(A24)

Z(x,x")=

+Bo(u)‘P(x,u)‘I'(X’,u)](—;;)} (A25)

d\T .
where the “transpose” operator (—(E-) is understood to

71

operate on a “good” function of x to the left and ( -‘%)
to the right.

In terms of the basis (37), ®(x,p) and ¥(x,p) become
the vectors R(p) and T( ) where

ed 1n,  2d .
RO(p)= > czm—i[l—(—l) cosad]
RP(p)= ’;0 l.’:___(:__l)f_.l_/_z.
L) (l+u2 2)
4 X0
-sin[ (2n+1)tan ™' 2pxo+ o |
n ? . n
- —;%— O sinsd(— 1) (A.26)
2end d
TO(p)= 1—(—1)"cospud|,
! (P =Gy !
ud #Enm
=0, pd=nz
=y
TE(w)= V 1/2
~sm[(2n+1)tan“‘2px0+,ud]. (A.27)

d .
Furthermore, the operator — becomes the matrix

dx

Dy 0
=(___"ff_-r ______ ) (A.28)
= 0 i Dlmn
where
D= fo 6(x) = c(x)dx
e [T (D)
_Vdj[ PSR
Dy= f E(x—d) = B(x d)dx
= f E(x) 7 B(x)dx
i 0, m>n
==11 m=n (A.29)
Xo
1 m<n.

The integral equation (A.19) for the magnetic field be-
comes the matrix equation

ZOIQ~= Z-G, (A.30)
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where

L
20,

(IS

TM:

BeO: ~kT+£T'f0°°du[ B()R(R™(p)

1
+B(WTWT(W)] D). (A3
With the above definition, the scattering matrix is given
by (65).
APPENDIX IV
Electric Field Formulation: TE Modes

In the electric field formulation, the reflection
coefficient is given by (55), where the unknown E (x) is
the solution of the integral equation which has the same
form as (31) but with the Green’s admittance function

o | S B ()
+ fo Vniks— p1? ¢(x, p)(x', p)dpe
2 ]
+ ;fo duyk§— p? cospx cos px’ }

(A32)

The above presents a similar convergence problem as
(A.30). As a first step towards reducing it to a properly
converging form, we rewrite identically the air half-space
Green function, the second integral in (A.32), as

d? ,
%(k3+ 71;7) S HP (k).

The limit of the contribution of the region z <0 that is the
first integral in (A.32) for v—0, i.e.,, when this region
reduces to a uniform dielectric #n,, is
d? ,
;( nkl+ ;5) > HP(mpkolxxx))  (A34)

whereas, again using partial integration with an unspeci-
fied “good” function, the remainder can be cast in the

form
d\T pe ) d
(&) £ k= wxxim(55) a3

Y(x,x)=

(A33)

where

21 . .
t(x’x,; P») =‘D(x,#)®(x',ﬂ) - ; ;E sin px sin px’

¢I>(x,u)=‘v-% ;lc-sinsx, 0<x<d

2
m

(A36)

o2
—sin| w(x—d)+a sinsd },
{ p [Mx—d)+al- Co? }

d<x. (A37)

Hence the Green’s admittance can be written as
~ DI , 1 d?
)= 2| S B ehu(x) + 5 i+ )
k dx?
' 2 Héz)(x2k0|x * x'[)
+ 21+ -L) S B ol )
2 0 dxz - 0 0 -

* Vn2k2 — 2 .
+j(; dunyks— p t(x,x,p.)}.

The integral equation for the electric field E(x)(4,=
1,4,_.,=0) becomes the matrix equation

YyQ@= YF,

(A.38)

(A.39)

where

1

=2w

{ S 6,0,07 +n3 H (nyho) + K2 H (k)
[H (ko) — B (meg)+ H " (ko) H (ko)
= fo G [RGB~ TWT" (W] 2 ).

(A.40)

It is required to evaluate the matrix elements

_ff dxdx'L (x)——zHO")[k0|x+x|]L (x).

(A4])
As
d2 (2) ’ d 2 ’
s [k(,]xtxj]=ia HP[ ky(x=x")]
(A42)
we have

s

L,=|D"(H -H )
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Transmission-Line Conductors of
Various Cross Sections

HAROLD A. WHEELER, FELLOW, IEEE

Abstract—The inner or outer conductor of an RF transmission line may
have a noncircular shape of cross section, in which case it can be ascribed
an effective radius which is valid if the two conductors are sufficiently
separated (as by the ratio of radii). Moreover, there are some combinations
of inner and outer conductors whose wave resistance can be evaluated
exactly. These can be used to test the degree of approximation of the
effective radii. There are some unique shapes of combinations which have
binary submultiples of 377 ohms wave resistance because the field pattern
of each can be mapped on a set of squares. A variety of cross sections are
described and evaluated, with due reference to their sources. They are
related by conformal transformations, which are indicated but not derived.
One example is an inner conductor whose cross section is a rectangle with
rounded edges. One family is based on the crescent or biangle formed of
two circular arcs between two angles.

I. INTRODUCTION

N RF TRANSMISSION line is formed of two cylin-

drical conductors, typically an inner conductor
shielded by an outer conductor which provides the return
circuit.

The properties of either conductor depend on its cross
section, which is described by its size and shape. Here it is
taken to be made of a perfect conductor so the skin depth
approaches zero at the operating (high) frequency. Then
its boundary is the same toward electric or magnetic field.
Also the significant dimensions of its cross section are
taken to be such a small fraction of the wavelength that
the TEM mode is the only field pattern that need be
considered.

Manuscript received June 4, 1979,
The author is with the Hazeltine Corporation, Greenlawn, NY 11740.

The two conductors may be separated sufficiently (as
by a large ratio of size) that each can be evaluated in
terms of an equivalent circular cross section. Then the
effective radius of either one is defined as the radius of
the equivalent circle. The intervening space contains a
region where the field configuration is nearly independent
of the peculiarities of the shape of either cross section.
This concept is valid as an approximation for a wide
variety of shapes that have practical and/or academic
interest. Any one shape is related to the equivalent circle
by a conformal transformation that may be susceptible of
simple formulation.

The evaluation of a shape in terms of its effective radius
is here expressed by stating the dimensions equivalent to a
unit radius. This is the viewpoint of synthesis, and can
easily be reversed for analysis.

The most common conformal transformation is the
algebraic integral power or root about some origin, which
preserves the unit circle as a reference. Inversion in a unit
circle transforms from an inner conductor to an outer
conductor, or vice versa.

If the two conductors are not sufficiently separated, so
there is some interaction of their shapes, a rigorous
evaluation must be based on the composite shape of the
double conductor. This incidentally provides some exam-
ples for testing the degree of approximation enabled by
the separate effective radii.

The dielectric medium is taken to be free space.

There are presented here a variety of shapes of conduc-
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