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Variational Treatment of the Diffraction at the
Facet of d.h. Lasers and of Dielectric

Millimeter Wave Antennas

TULLIO E, ROZZI, SENfORMBMBER, IEEE, AND GERARD H. 2N’T VELD

Ahlwct-ms peper preseata an acauste verfationsf treatment of the
~ftimof~md~mv=bym----ti~ha
dfekctric wsvegatde+ sachaethe mirror ofadoubleheter@r@m (d$h.)
hj4m&,m~adp~da~eW@m-fm~

wavq under the asstnttptfon of amafl eapect ratio.
A metrtx reprewntatfon of the Green’s funetfon is derived ttitalytk!afly,

hti Hof-effdve fq-, fm~~~. Fm&~q

the compffeathn httrodwed by the dkonlfnaity of the tramveme dectrk

field across the dielectric interface fs dkassed fn detail.
lhenmnerfed examples refer tothedh bieereOn@arMon.Both

transveme dfreettone (pqtendfctdar ss welt as paraflel) to the junclfon are
etud$ed.lhe effect ofmndecoupffng atthe ndrrnrof aLOChserasweli
es the effect of an antb’efleden Coadng are investigated.

I. INTRODUCTION

T HE PROBLEM OF diffraction of surface waves at

the end facet of a double heterostructure (d.h.) laser

(Fig. l(a)) or of a semi-infinite slab (Fig. l(b)) is a classi-

cal one in dielectric waveguide theory.

The mirror reflectivity is a crucial parameter of the

laser, as it determines its oscillation condition. Moreover,

dielectric slab antennas find applications at millimeter

frequencies.

A variational formulation of the diffraction of TM

waves by a semi-infinite slab was given in [1] as far back

as 1957. In this treatment, the incident surface wave is

used as a trial field. An analogous approach was used in

[2] to discuss the diffraction of TE and TM waves, per-

pendicular to the p-n junction, at the mirror of a d.h.

laser, as well as in [3],

A different approach based on a Fourier transform of

the integral equation was introduced in [4]. An elegant

approximate analysis neglecting mode conversion at the

facet leads to an explicit expression of the far field, as

elaborated in [5], whereas in [6] a theoretical comparison

of various approximations is presented. A recent compre-

hensive review of the subject with numerous references

can be found in [7], [8].

Steplike discontinuities in dielectric slabs (TE case)

were analyzed in a previous paper [9]. There a higher
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Fig. 1. Longitudinal cross section of laser, showing (a) facet with
mirror, (b) facet with antireflection coating.

order variational solution of the Ritz-Galerkin type was

obtained by discretizing fields and Green’s function by

means of a sequence of appropriately scaled Laguerre

functions. The above basic approach is the starting point

of the present treatment.

In the TE case, we can take advantage of the fact that

as the effective frequency ud = (rz~– tt~)l’2kOd goes to zero,

the slab Green’s function in the magnetic field formula-

tion reduces to that of a homogeneous half-space. The

latter is just the Hankel function whose exact representa~

tion in terms of the expanding functions of [9] can be

obtained analytically. In this manner, the matrix elements

of the total Green’s function (air space and semi-infinite

slab) are given by a closed expression plus a small correc-

tion (O(wi)2) to be determined numerically, This approach

is analogous to the extraction of the quasi-static limit for

discontinuity problems in closed waveguides, In the TM

case, the above approach does not apply unless n 1m n2 as

well.

The formulation of the TM problem in terms of the

transverse electric field leads to an expression of the

Green’s function that is converging in the classical sense

(unlike the magnetic field formulation). The transverse
electric field is discontinuous at the dielectric interface

however, an expansion in terms of continuous functions

as in [9] is not suitable for large refractive index dif-

ferences.
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This difficulty is avoided by employing two separate

sequences of expanding functions: one inside the slab, the

other outside it,

The above analysis applies to other TE and TM discon-

tinuity problems, such as in [10] for instance.

In the examples, the effect of coupling between surface

modes at the mirror of a LOC laser is investigated in

detail and found to be insignificant. The effect of an

antireflection coating at the mirror is to reduce the laser

configuration of Fig, l(a) to that of the semi-infinite slab

of Fig, 1(b). Scattering properties and near fields in the

two configurations are compared.

The effect of gain in the active region and loss outside

is taken into account. This is not significant in the direc-

tion perpendictilar to the p-n junction, whereas it provides

the very guiding mechanism parallel to it. In fact, an exact

treatment of the mirror reflectivity of the laser would

involve solving the three-dimensional diffraction problem

of a semi-infinite guide with a sharp dielectric boundary

in the direction perpendicular to the junction and a dif-

fused one parallel to it, Gain-induced parallel modes,

however, can be reasonably well simulated by the modes

of an active dielectric slab in a lossy medium, particularly

for configurations with transverse current confinement,

Excluding some special configuration such as buried het-

ermtructures, the stripewidth (3– 10 ~m) is considerably

larger than the thickness of the active layer (0.3 ~m).

Hence, it is reasonable to break down the hybrid mode

problem [11] (resulting from the two-dimensional cross

section) into a perpendicular TE-mode problem and a

parallel TM one to be solved successively by means of the

Effective Dielectric Constant procedure [12]. If required,

the total reflectivity could then be deduced by combining

the two reflectivities in a manner analogous to that dis-

cussed in [7], [13] on a spectral basis.

The variation of the reflection coefficient of the parallel

mode and of the near and far fields with varying gain and

stripewidth are numerically investigated.

II. WAVEGUIDE MODES

The basic configuration under study is depicted in Fig.

1. It consists of a dielectric slab of width 2d and complex

refractive index nl = nj +jn ~ enclosed between two semi-

infinite layers of complex refractive index nz = nj —J”n~,

(n~ <n;), The structure is terminated abruptly at z= O.

Owing to symmetry, we need onty consider x >0. As a

consequence of the discontinuity at z = O, the incoming

surface wave couples to the continuous spectrum of the

slab and of the air half-space (z> O).

A. Surface Waoe

1) TM: The transverse field component of a surface

wave mode of the slab HY and EX is given by

45X(X) = ~ u(x)
e(x)

Hy(x) = ~ u(x)- You(x)

(la)

(lb)

where

{

n?, x<d
E(x) =

n;, x>d,

/3 is the propagation constant of the surface wave. u(x),

which is proportional to the x-component of the electrical

displacement vector, for even modes is given by

{

a CosKX, X<d (2a)
u(x) =

aces Kde– T(x–dj, x>d. (2b)

The wavenumbers K and y are related by the conservation

equation

K’+ Y’=(n?- %)~%~z (3a)

and the dispersion relation

~tan~d=(nl/nJ2y. (3b)

The normalization constant a in (2) is fixed by the re-

quirement

(4)

to be
r 2 1

1/2

a=nl

[

. (5)
d+(n1n2)2(K+ y2)/(nj6+n~7)/y

The odd modes are determined by interchanging sin and

cos in (2) and setting ~d+~d+ 7r/2 in (3),

2) TE: In the TE case the relevant transverse field

components are HX and EY given by

E,(x) = u(x) (6)

– Hx(x) = J- 1.4(X)= You(x).
WO

(7)

U(X} is given by 2. The conservation equation is the same

as (3a). The dispersion relation is

frtanud= y, (8)

The normalization is such that

and consequently

-v-

2
a=

d+l/y “

(9)

(lo)

B. Continuous Spectrum

1) TM: The Hy component of a mode of the continu-

ous spectrum of the region z <O, for even modes, is given

by

HY(x,p) = Y( ~)f#J(X,~) (11)

with

If
2 ~ co5~x
— , x<d

@(x, p) = = c

T
~ nzcos[s(x–d)+a], x>d

(12a)

(12b)
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where

Y(p) =I
nzko >p

n2k0 < p

(13)

S2= J + V*, O<p<cn (14)

c=[cos2sd+(:r(:rs’n2sd]”2(15)

(16)

The normalization condition is

J
w dx

~ ~q$(x,v)+(.x,p’) = 8( ~– p’). (17)

We can describe the field in the air region by means of a

continuous spectrum of plane waves

f
+(x,p) = : Cosp.x (18)

although a more compact representation (to be discussed

later) will also be useful. The odd modes are obtained by

replacing cos by sin in (12.), (18) and sd by sd+ ~ in

(15), (16), and (12b).

2) TE: The even Ey and HX components of the continu-

ous spectrum are given by

EY(x,p) = @(X,/J) (19)

– HX(x,p) = Y( p).+(x,p) (20)

where now

[

f

21—
z- F Cossx’

x<d

@(x,/.L) =

T

(21)

2— cos[p(x–d)+a], x>d
T

Y( /4)=

~=tq:t-q (;$U=4 (23)

c=[1+$in2sdl”2(24)

and

~m@(x,p)@(x,p)dx= 8(p-p’). (25)

It is worthwhile to observe that as P2>z 02, we have

S-+p; a+p.d, c-l (26)

63

and

t+(x,p)-+
{

2
y Cospx (27)

i.e. the continuous spectrum of the slab reduces to the

plane wave spectrum of a semi-finite homogeneous region.

This is not the case for TM waves unless nl = n2 also.

III. INTEGRAL EQUATION FORMULATION AND

GREEN FUNCTION: TM CASE

Consider n surface waves to be propagating in the slab,

characterized by the functions u,””” u.. Let the electric
field amplitudes of the incoming and reflected waves at

z = O be expressed by the vectors A and B, respectively.

Let b(p) denote the amplitude of the scattered modes of

the continuous spectrum in the slab and d(p) that in air.

Continuity of EX at z = O requires

E.(x) = ~ (Ak+ Bk)
Uk(x)

k=l
~+~%d-d~

‘f%d+(wddp (28)
o

while continuity of Hy requires

H,(x) = ~ Yo&l~ – ~k)Z4k(X) – ~m Y( ~)b( ~)@(x,p)dv
k-1

‘f%Add(OWw)d~ (29)
o

where

Yo( /4)=

[

ko>p

ko<p,

(30)

B~, b(p), and d( p) can be obtained by orthogonality from

(28), Hence, the integral equation for the electric field is

~ YO,A,U,(X)= fm Y(x,x’)EX(x’)dx’ (31)
k=]

where

2 Y(x,x’) =

Jo

~ Yok14k(x)uk(x’)
k=l

+JW[Y(P)+(X>P)+(X’>P)
o

+ Yo( ~)1//(X,/J)t/J(X’,~) ] d~. (32)

Let E, be the solutions of (31) with Al= 1; A~~, = O. The

scattering matrix of the discontinuity, as seen by the

surface waves of the slab is then

J

m
Sk, = – 8/d+ Ep~dx. (33)

o

We observe that EX(X) is discontinuous at x = d, namely

n~EX(d-) = n~EX(d+). (34)

Instead of using (28) in (29), obtaining an electric field

description, it is equally possible to proceed the other way
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round, obtaining a magnetic field description. This is given

in Appendix 111.

In view of the. behavior of the surface wave mode, an

appropriate choice of the “basis” (37) is

IV. DISCRE~E I@PREsENTATION Arm RT2–

GALERKIN SOLUTION: TM CASE

The integral equation (31) is amenable to a Ritz–

Galerkin variational solution with good convergence

properties if account is taken of the discontinuous jump of

EX at x = d. Using a complete expanding set continuous

over the interval O<x < cc as for the TE case [9] is less

satisfactory here unless nl x nz, for more terms would be

required. We shall introduce instead a piecewise continu-

ous expansion. The EX component of the surface wave

u(x)/c(x) can be written as a two-component vector

(35)

where the first component represents the field in the

interval O<x <d and the second in the interval d <x.

A similar description applies to the EX component of a

mode of the continuous spectrum. Consider now a func-

tion f(x), continuous over each subinterval, where it takes

the form f,(x) and jz(x), respectively, but possibly discon-

tinuous at x = d. The “scalar” product in functional sense

of u(x)/ f(x) is just

In each interval, we can find a separate discrete sequence

of expanding functions

c~(x):O<x <d, m= O,l,. .-, A4

~~(x–d):d<x, ?Z=O, l,. ... IV. (37)

The c~’s are complete in the limit ikf~ca and possibly

orthonormal over the interval of definition and so are the

E.’s. By means of the set (37), the function u(x)/~(x) is

transformed into the M+ N + 2-dimensional vector

Q==

where

)(1/d)Q, } M-t-l
----------

(1/n;)Q2 } N+l
(38)

$$i(x) = -$jQlmcm(x) (39a)
~=(j

~z(x) = i Q#.(x – d). (39b)
~=o

If a similar expansion holds for the arbitrary function ~(x)

so that j+(F1F2), then the “scalar product” (36) reduces

to the ordinary scalar product of two M + N +2-

dimensional vectors:

(41)

with

{

1
5*

rn.o
.

7

JT;x):n(x)tx:Oam (42)
o

and

[)(.iln(x – d) = ~ L. ~ e-(x- d)f2x0
~

(43)

~WE~(x-d)E.(x-d)=8~.. (44)
d

The Ln’s are the ordinary Laguerre polynomials, XO is a

scale factor to be determined so as to “optimize” the finite

expansion. A useful criterion is to minimize the error of

the representation of the incident mode outside the core.

If y is real, the ~presentation is trivially simple: we just

set N=O, Xo=—.
2y

As y is complex in general, we use a minimum square

approximation for any given N. Another criterion consists

of imposing the continuity of u at x = d, i.e., from (41) and

(43)

The former is suited to describe the “tail” of the field, but

does not ensure a priori that the condition at the interface

x = d is satisfied. The contrary holds for the latter. The

coefficients of the expansion (39) are found by straight-

forward integration

Q,m=a

and

sin Icd”Kd
-)m— tcd+mv

(Kd)2-(mn)2 ‘
(46)

~2n=~”& Cos@yxo- ;)”(YXO+ +)-n-’.

A formally similar expansion (but convergent only in

distributional sense) holds for the modes of the continu-

ous spectrum

[1

PI(p)
@(x,p)+F=

P2( p)

where

(47)

(48a)
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and [9, appendix I] V. INITiGRAL EQUATION AND GREEN FUNCTION:

TE CASE

i

2X0
P2n = —

(- 1)” Unlike the TM case, in the TE case, both transverse
cos[(2n+ l)tan-12pXo+a].

7 (+ +pzx;)’/’
components EX and HY are continuous across the dielec-

tric interface. Two features result from this property.

(48b) i) The limit (26)–(27) holds for p2>>u2, even if n1>>n2.

ii) A continuous expanding set can be used.

The expansion for the continuous spectrum in the air
The continuity equations for the TE case have already

half-space is
been discussed in [9]. The integral equations for the mag-

netic field with A,= 1, A~~l =0 are

()

P;
@(x,p)+P”= P. – Z0,2+(X) = J%t’z(x,x’)hl(x’) (56)

2

with
with the Green’s function

.-

r
+?co ~v

p:m . ?5 (-1)”
cos[(2n+I)tar-12pXo+ @]. J

J
= (++@x:)”2

“ 0 w Cospcosw’ “ ’57)

In the even case. the contribution of the air half-mace

(50) region can be wri’tten compactly as
.

The terms of the above sequences of expanding functions ~ ~
cospxcospx = + ~ H$’)(kolx * x’1).

EX is expressed as the (unknown) M+ N+ 2-dimensional 2J%% ‘

vector (58)

[1(1/Izf)F, H~2) = Jo–jNo is the Hankel function of the second type.

F= ---------- (51) NO such dose form expression is available for the contrib-

(1/@’2 ution of the region z <O, However, it is convenient to

and the integral equation (31) for the electric field with
extract the limit of lightly trapped waves (vd)2<< 1) from

Al= 1; Ak~l = O becomes the matrix equation
the impedance of the latter region. In fact, we have

YOIQ = Y*F, @(~, P)@(~’,&) = + ~ H$2)(n2kolx Y X’1)
.

where ’52) J“& ‘

{

g= ~ ~~, *QkQ:+Jm
[& P( p)P~( p)

2
‘J%b ‘(x’’’;’)” ‘5’)

The “difference” kernel

1

I 1

2
+ P“( p)PO~( p) dp. (53) t(x, x’; p) = +(x, p)+(x’, p) – ; Cosp.x Cospx’ (60)

. .
~k;- p’ J is identically zero for u = O and decreases as p – 3 for large

The normalized scattering matrix for the surface waves is p. Hence, the total Green impedance function can be

~k,= –
rewritten as

tl~l+ d=” Q#~-loQ (54)

while the scattering of a surface wave into a (radiative)
{

‘“: ~., ~ %(x)%(x’)2(X,X’) = —

mode of the continuous spectrum of either the slab or of
the air region is

( {

Y112(P) * –-l. P(P)
gkl = f ( Yok)l/2

Y;/’(p)
Q*Y

PO(p) “
(55)

The upper or the lower expressions are assumed according J

to whether the continuous mode belongs to the spectrum
J

‘=1

of the slab or of the air region, respectively. )
— t(X, X’; p)d~ . (61)

+ o P(P)
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Analogous results hold for the odd case. The electric field

formulation is given in Appendix IV. owing to feature ii]

mentioned above, the normalized Laguerre functions (43)

can be employed as expanding functions over the whole

intepal O<x < m. The functions u(x), O(X, p) are mapped

into the N+ l-dimensional vectors Q~ and P(p), respec-

tively. These have been derived in [9] and are reported in

Appendix I for ease of reference. The advantage of in-

troducing the Hankel function in the preceding formula-

tion is that the matrix elements

%.(Y) = ;JmJmdxd%(x)

can be derived analy~ically. Derivation and result are

given in Appendix IL Hence, the integral equation for the

magnetic field formulation becomes the matrix equation

zo@ = Z“G,. (63)
.

Gl corresponds to the unknown h,(x) and

‘p . [P(p)P~(p)-PO(p)PO~( p)]. (64)

‘~”m

The scattering matrix between surface waves is given by

~~~=i?~l-~= Q&-’” Ql (65)
.

while the coupling between surface waves and the con-

tinuous spectrum is given by

the upper expression applying to continuous modes of the

slab, the lower one to modes of the air region.

VI. P&m AND FAR FIELD

A. TM Case

Once (52) has been solved, we obtain the approximate

expansion of the near field as

The corresponding far field obtained by saddle point
integration as in [9] is

where, in air, 0 is measured from the positive z-axis, and

we have n = 1

TABLE I
COWERGENCE OF ILBFLECTION COEFFICIENT: T% MODE*

N o!;r8 L r (degrees)
o 4.41

1 0.624 NM

2 0.620 2.52

3 0.624 2.75
4 0.623 2.98

5 0.622 2.92
With antiretlection coating:

4 0.024 0.18

*d= 0.3 pm; ~=0.9 pm; nl -n~ = 3.61; n2+= 3.40.

In the laser, 8 is measured from the negative z-axis, n = n2,

and

.e –j[a(@) – nJ@sm8] (70)

B. TE Case

The near field is here given by

Hx(x) == ~ G.fJx) (71)
n=O

while the far field is

E:(r, e)/q.to

in air

h’1 p*(ko sin~). Ge –J[a(e) – %%dsinol, in the lawr
nzkor

(72)

WI, EXAMPLES

The theory described in the previous sectiorts will now

be illustrated by means of a few examples.

A. Refractive Index Guiding

First, the convergence of the reflection coefficient of the

TEO mode perpendicular to the junction for increasing

order of the variational solution was tested for the stan-

dard configuration, perpendicular to the p-n junction,

where

n1=n~=3,61; n2=n~=3.40; AO=0.9 pm; d=O.3 pm.

The results are shown in Table L The modulus of the

reflection coefficient agrees quite well with that givem in

[2], [14] where the incident TEO mode is assumed as “trial

field.” This is to be expected, owing to the variational

nature of the reflection coefficient. The near and far fields

are compared in Fig. 2 with those resulting from assuming
TEO. In the latter, the near field is a real function, plotted

as a broken line in Fig. 2(a). In the present treatment, the

near field is a complex quantity, whose amplitude and

phase are shown in Figs. 2(a), (b). In particular, there

appears to be nonnegligible bending of the phase front

just outside the active layer, where the flanks of the near

field differ from those of the modal field. The correspond-
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Fig. 2. Comparison of variational field (direotion perpendicular to the
junction) with modal field. (a) Ampfitude of near field. (b) Phaseof
near field. (c) Amplitude of far field.
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.,
tude of f-m field.

in Fig. 2(c) with that obtained

means of a Fourier transform,
including the correction for the “obliquity factor” [14],

[15] and seem to agree even better with the experimental

results of [16]. The inclusion of gain in the thin layer,

typically 50200 cm-1, and of free-carrier loss (5 cm-1, in

the surrounding region does not appreciably alter these

results, except for a very slight narrowing of the near field.

The question arose whether in a large optical cavity

laser, where possibly more than one Ex mode can propa-

gate, significant modal coupling can take place at the

mirror. Typical results are shown in Fig. 3. TEO and TE2

are propagating and TEO is incident. Mode coupling as

given by IS021 is insignificant. The magnitudes of the

reflection coefficients ISml and IS2J agree quite well with

the values found in [2]. However, the near field plotted in

Fig. 3(a) differs from that of the incident T% mode. The

corresponding far field is given in Fig. 3(b).

B. Antirej7ection Coating

Placing an antireflection coating on the laser mirror

reduces the configuration of Fig. 1(a) to that of a semi-

infinite slab radiating into a half-space n2 shown in Fig.

l(b). The ensuing reduction of the reflection coefficient is

shown in Table I for d= 0.3 ~m. The near field is now
fairly close to that of the incident TEO mode. The ampli-
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tude of’ the far field (Fig. 2(c) for the standard configura-

tion d= 0.3 pm and Fig. 3(b) for the LOC cased= 1.6 pm)

shows a somewhat broader radiation pattern.

C. Gain Guidirtg

Fig. 4 gives a somewhat idealized picture of the laser

cross section, neglecting diffusion parallel to the junction.

k this direction mode confinement (guiding) is provided

by gain g in the GaAs region under the stripe (active

region) and by loss outside it. The above two-dimensional

cross section is replaced by the slab configuration of Fig.

4@) by means of the effective dielectric constant proce-

dure. If we assume a hybrid ~“ mode (TE perpendicular

to the junction), we must then consider a TM mode

parallel to it.

As mentioned in Section 111, the EX-component is

slightly discontinuous of the interface so that (cEX)W,2 – =

(di’JW,2-F. This condition is not satisfied a priori by the
variational solution since the expansion inside and outside

the stripe are independent and converge separately in the

mean. The convergence of the variational solution, for a

5-pm wide stripe with a gain of 300 cm-l in the active

region, is shown in Fig. 5. The near and far fields for

M= 0,1,4, IV= 0,4 are compared with those obtained,

assuming the incident modal field as near field and its

Fourier transform as far field.

The amplitude of the modal field and the variatiotial

near field are virtually identical under the stripe and differ

somewhat in the tail outside it. Taking M= 1, N= O, i.e. a

two-term Fourier cosine expansion with complex

coefficients under the stripe and a single exponential term

outside is quite satisfactory in all respects. The phase of

the near field, albeit significant, does not differ apprecia-

bly from that of the incident (complex) mode and, as

such, is not plotted. The magnitude of the far field is

hardly sensitive to the details of the near field; so assum-

ing the latter to be the incident modal field gives virtually

identical results. The variation of the reflection coefficient

with gain and stripewidth in the region 3< w <6 ~m was

also investigated and found to be rather minor.

D. Gain Guiding and Refractive Index Antiguiding

Owing to the relationship between real and imaginary

part of the refractive index, gain guiding is necessarily

accompanied by refractive index antiguiding. The ratio

between the latter and the former is estimated to be in the

region of 0.5–3 by various authors [17], [18]. We assume

the lower value in considering the configuration of the

insert of Fig. 6.

Plotted are the far fields for w= 3, 5 pm and for three

different values of the gain. It is interesting to note the

appearance of sidelobes for the smaller stripe and lower

gain values. These lobes become more prominent with

increasing antiguiding. Also, for the smaller stripewidth,

the influence of the gain on the field pattern and on the

reflection coefficient is somewhat more marked, as to be

expected.

Y

“,= 361-j>%.2Wkm-’ II
In,,36~.l*x.9m [cm-’]

w
Fig. 4. Idealized geometry for computing fields paraltel to the junction.

(a) Original two-dimensional crosssection. (b) Equivalent one-dimen-
sional crosssection after application of the Effeetive Dielectric Con-
stant procedure.

VIII. CONCLUSIONS

We have derived a rigorous variational treatment of the

abrupt discontinuity at the end plane of a dielectric (ac-

tive or 10SSY)slab in a 10SSYmedium under the assumption

of small aspect ratio.

New theoretical results allow the discretization of the

Green’s functions for both TE’ and TM cases in both

electric and magnetic field formulations. Numerical re-

sults are provided for the d.h. laser configuration. From

these, it appears that assuming the incident field as trial

field gives an accurate estimate of the modulus of the

reflection coefficient in both directions, parallel and per-

pendicular to the junction as expected, as well as a good

guess of the near field parallel to the junction. Significant

differences, however, arise in the near and far fields

perpendicular to the junction, In particular, the amplitude

of the far field decreases faster than previously theoreti-

cally predicted, even including the “obliquity factor” cor-

rection. Correspondingly, the phase of the above near

field presents a significant distortion previously unre-

ported.

The analytical techniques presented arc quite general

and can be applied to various types of dielectric discon-

tinuities at optical and microwave frequencies.

APPENDIX I

Components of the Vectors Appearing in Section V (TE

Case)

{

[Gos (2rz + 1) tan – 12kxo]
Q~n=a~ (– 1)”

[:+(k~o)z]’”

n

()+~(–l)kL;_k :
k=O

1COSkd + cos[(k+ l)tan-12kx0-l- kd]

(;+ yxo)k+’ 1}[$+(%)2‘
.n=O, l . ..N. (Al)
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Cl2X0 (- l)” cos[(2n+ l)tan-’2sxO]
APPENDIX II

Pn(p)= ~ y It is required to compute

[:+(%)2]”2
,(~)*J@e-x2x0Lg(~)HP; (ko) = J ‘e -x/2xo~

o

01[

cos[(k+ l)tan-12p.xO+a]
.@(kolx T X’[); .+ ~ ( – l)ze ‘d/2xoLnk_k 4

x~ $+ ( Wo)’(k+ ‘)’2 1
(A.3)

k=O
o

1 cos[(k+ l)tan-12sxo+sd]
——

1]c [4+(~xo)2](k+’)/2 “

(A.2)

Let us introduce the expansion

, – lx–x’\/2xo m

Ho(kolx – X’1) = ~. ~~ou~L~ lX- “]~ (A.4)

with coefficients to be determined later. Using (A.4) in
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(A.3) we obtain

HP; = ~ a~I~
k=O

with

J ~(~)~~m~e-x’2x0L,(~)1~ = ‘.- X12X”L
o

()

[X-x’l.e – lX–X’l/’XOLk —

.
J

.e.x/xoLp(:;:JxLq(:)Lk(%):

-i”’p(:)%F’ -X’’X”LK)LEFK

-q + 1;. (A.5)

Hence, setting ~ = u, we have

J ,(~)~~x’XOLk(@Lq( &u)duIi= ‘e ‘x/xoL
o

=
Jo

‘e-X/XO’P(~)~[Lk+g(~) -Lk+~+l(~)]

. 8p,k+q ‘8p,k+q+,. (A.6)

Similarly, setting ~ = u in the second integral in (A.5)

we have

‘:= Jmf~~(:)e-x’xOJme-tiL~(”)L~(”+ :)~”

(A.7)

However, using integration by parts, we obtain

J

w
( ‘) =~aLq(u+~)d~-uLk(u)Lq u+ ~ d“

o

.{e-UILk-l(~)-L~( ~)]}

‘~mL~_l(u+~)e-UILk_ l(u) -L.(u)].

(A.8)

Using the result [19, p. 1038]

L&l (u+ ~)= ‘~’ L~(U)’q-I-*(~) (A.9)
*=0

(A.8) can be rewritten as

‘~’ Lq_l.~(~)~me-UIL,.l( u)-Lk(u)]L~(u)du
m=O 00

. ‘~lLq_l_w(~)[~~,k-~-8m,~]
~=o

‘L@(5)-Lq-l-’(:) ‘A’o)

Hence

which, together with (A.6), gives

HP; = a
P–, —aP_q_l +aq_p —aq_l_p (A.12)

(a~ = O for k< 0). In order to compute EZ’, let us again

use (A,4) with the minus sign changed into plus. LJsing

(A.29-35), we get

J ()HP: = ~ ak ~e-xlxoLp ~ ~
ko o

“J

U3

()

t
– X’/X~’

()

x+X’ dx’
e ‘e

– ]x_xq/2xoLk —

o q X. X. X.

=ap+q —ap+q+le (A,13)

Hence the result

Hpq(kJ =Hp: (~o) + HP; (ko)

-~(ap+q-ap+q+l)

+ +(ap-q –aP_q_l +aq_p —aq_p_l).

(A.14)

It still remains the task of evaluating the coefficients of

the expansion (A.6)

J

m

ak=xo 6?
– u/2~j’ykoxo~) Lk(~) ‘U’

o

Using the expansion of the Laguerre polynomials [19, p.

1037] we obtain

{ [(. Pm 1 i- 4k~x~) ‘1/2] +j;Q~[(l+4k:x;) -l’2])

(A.15)

where the definition of the Hankel function E&)= Jo –

jNo and [19, pp. 7– 11] have been used. P and Q are the

Legendre polynomials of order m. Let

@o= arctan 2koxo (A.16)

COS@O=(1 +4k;x:) ‘1’2. (A,17)

Hence

ak(kO) ‘XO ~ (– I)”( k:m)(2COS+o)m+1
~=1)

[

2

1
. P~(cos +.) +j= Q~(cos Oo) ,

. 0, k<O.

APPENDIX III

Magnetic Field Formulation: TM Modes

.,. . . . From (28) and (29) by orthogonality,

k>O

(A.18)

we obtain the
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integral equation for HY with Al= 1, A~+, = O, that is hl. d
operate on a “good” function of x to the left and

%- ‘~@ Z(X,X’)h,(X)dX’ (A-19) tO the right
()z

o In terms of the basis (37), @(x, p) and V(x, V) become

where HY is continuous at x = d and the vectors R(p) and T(p) where

{

Uk(x) Uk(x’)

z(x,x’)=; ”&” ~&k--
c(x) 6(X’)

i

End 1 nz
R~’J( p) = —— 2d , [1-( -l)%osad]

~ C ‘l (sd)2– (mr)

+ J[ rj)(x,p) +(x’, #L)mP(P)~—
0 E(x’)

f{

I@(p)= + –.—. –

1)
+Bo( IJ)+(X3P)+(X’>P) 4 . (A.20)

; ‘2 (i~~$’2

Unlike (32) and (64), the p-integral in the above Green

impedance function does not converge in the classical “sin[(2n+ l)tan-12~o+ a]

sense. A properly convergent expression, however, can be

obtained utilizing a potential function. Let @(x, p) be a -1
continuous function, such that

: @(x, p)
_ +(x,p) .

E(x)
(A.21)

n2 2V2
– — — sinsd(– 1)”

n: sCp2
}

(A.26)

Then, by partial integration, we have

r

2ad
Ty( p) = —

d

J
dH(x) dx.

[l-( -l)ncos@],

“ ( @)’- (n~)2m #(x,P) H(x)dx= [oH]; – ~%(x>P) dx

o E(x)

(A.22)
@#nr

If the “trial field” His a “good” function [20] @(O,p) = O = o, @= nfr

and IO(CO,p)l < m, then the integrated term vanishes. The

appropriate function @ is clearly
T

(-1)”
qq( w) = : ; ~

T

21nz (z+~2x0’2
@(x,p) = ; — — sinsx, x<d

SC nf osin[(2n + 1) tan- 12pxo+ @]. (A.27)

f{

2 v’

1

Furthermore, the operator ~ becomes the matrix
._ ~~sin[p(x–d)+a]–~—

7r
sinsd ,

n, sCp2

~=(D:-/-:mi)

(A.28)
x >d. (A.23)

In the air space, the appropriate function is where

.

(A.24)

As we are dealing with “trial fields” constituted of “good”

functions, the Green’s impedance function can be rewrit-

ten as

{

l.l~(X) Uk(X’) a’ T
Z(x,x’)=; & ;&-@ -q-J

()‘x

fmdp[13(p)@(x,@@(xr,p)
o

D2_=~~Em(x-d):E.(x-d)dx

‘;%(x): %(x)dx
o

{

o,
1,

m>n
._ ~, m=n (A.29)

x~

d
-\l, m <n.

+ 80( ~)~(x~ ~)~(x’~ ~) 1( ~ ) } (A025) me integralequation (A. 19) for the magnetic field be-

comes the matrix equation

d ~ is understood to
()

where the “transpose” operator —
dx

ZOIQ= Z CGl (A.30)
.
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where Hence the Green’s admittance can be written as

+MdmL)m]”2] ~(A”sl) ,~ Hf’)(x’kolx& x’])— *

With the above definition, the scattering matrix is given

by (65).

APPENDIX IV

Electric Field Formulation: TE Modes

In the electric field formulation, the reflection

coefficient is given by (55), where the unknown EX(X) is

the solution of the integral equation which has the same

form as (31) but with the Green’s admittance function

+:~”a’,+~cospcospxf ,1
(A.32)

The above presents a similar convergence problem as

(A.30). As a first step towards reducing it to a properly

converging form, we rewrite identically the air half-space

Green function, the second integral in (A.32), as

( )_;k:+ ~ ~ IIf’)(ko/xf X’I). (A.33)

The limit of the contribution of the region z <0 that is the

first integral in (A,32) for 0+0, i.e., when this region

reduces to a uniform dielectric n2, is

‘(n’k’+s)?H’2)(n2ko’x*x”)‘A34)
whereas, again using partial integration with an urwpeci-

fiecl “good” function, the remainder can be cast in the

form

where

The integral equation for the electric field El(x)(Al =

l,A ~~[ = O) becomes the matrix equation

YO*Q= Y-Fl (A.39).

where

+DT.
[
g ‘(@co)–~ ‘(n,ko) + ~? ‘(kO) – ~ ‘(kO).

+~mdp~nw[R(p)RT(p)-2V(p)TT(p)]-D .
1).

(A.40)

It is required to evaluate the matrix elements

(A.41)

As

d2
d d H$’)[ ko(x + x’)]—H~2)[kO\x+x’\] = t ~~

dx2

(A.42)

we have

21.
t(x, x’; ~) = @(x, p)@(x’, p) – – — smp,x sinpx’

T ~’

(A.36) ‘1]
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Transmission-Line Conductors of
Various Cross Sections

HAROLD A. WHEELER, FELLOW, IEEE

AsOwet-The foner or outer conductor of tto RF transmission ffne may

futveaaottcirenfar ahapeofcromaectio~ inwbkhcasei tcanbeascrfbed
an effectfve radius which fs vafid if the two conductors are auffidently

sep8@d (RSby ti mtio of radfi). Moreover, there are some combinations
of fnner and outer condtmtors whose wave resistance can be evaluated
exactly. Theaecalr bensedto test the degree Ofapproximation of the

effactfve radff. ‘fliers are some unfque shapes of Combmttona whfch have
bfnary snbmuftipks of 377 ohms wave resistance betauae the field pattern
ofeschcan berosppedonaaet ofsquarm. Avmiety ofcromaectfoos are
desdbed snd evstuste@ with due reference to their aoorces. They are

related by confermal traosformatfonsj which are indicated but not derfveif.
ti-kkmtimnti~ rwb~~onba-etiti
reuoded edges.onefaroflyf sbasedonthe crescent or biie farmed of

two drcldar arcs between two Sngles.

I. INTRODUCMON

A N RF TRANSMISSION line is formed of two cylin-

drical conductors, typically an inner conductor

shielded by an outer conductor which provides the return

circuit.

The properties of either conductor depend on its cross

section, which is described by its size and shape. Here it is

taken to be made of a perfect conductor so the skin depth

approaches zero at the operating (high) frequency. Then

its boundary is the same toward electric or magnetic field.

Also the significant dimensions of its cross section are

taken to be such a small fraction of the wavelength that

the TEM mode is the only field pattern that need be
considered.

Manuscript receivedJune 4, 1979.
The author is with the Hazeltine Corporation, Greenlawn, NY 11740.

The two conductors may be separated sufficiently (as

by a large ratio of size) that each can be evaluated in

terms of an equivalent circular cross section. Then the

effective radius of either one is defined as the radius of

the equivalent circle. The intervening space contains a

region where the field configuration is nearly independent

of the peculiarities of the shape of either cross section.

This concept is valid as an approximation for a wide

variety of shapes that have practical and/or academic

interest. Any one shape is related to the equivalent circle

by a conformal transformation that may be susceptible of

simple formulation.

The evaluation of a shape in terms of its effective radius

is here expressed by stating the dimensions equivalent to a

unit radius. This is the viewpoint of synthesis, and can

easily be reversed for analysis.

The most common conformal transformation is the

algebraic integral power or root about some origin, which

preserves the unit circle as a reference. Inversion in a unit

circle transforms from an inner conductor to an outer

conductor, or vice versa.
If the two conductors are not sufficiently separated, so

there is some interaction of their shapes, a rigorous

evaluation must be based on the composite shape of the

double conductor. This incidentally provides some exam-

ples for testing the degree of approximation enabled by

the separate effective radii.

The dielectric medium is taken to be free space.

There are presented here a variety of shapes of conduc-
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